

AGRIBANK AND NON-FINANCIAL BUSINESS PERFORMANCE INDICATORS

Do Nam Hung*

Abstract: *Agribank, as a major state-owned bank in Vietnam, has consistently achieved strong business results. In addition to financial indicators, Agribank has placed significant emphasis on non-financial metrics, particularly in sustainability and social responsibility. The bank has actively implemented ESG (Environmental, Social, and Governance) practices, focusing on sustainable banking initiatives, digitalization and expanding its product offerings. These combined efforts have contributed to Agribank's continued success, both in terms of financial growth and its broader role in supporting the socio-economic development of Vietnam.*

• Keywords: *agribank, business performance, non-financial.*

Date of receipt: 25th Aug., 2025

Date of delivery revision: 04th Oct., 2025

DOI: <https://doi.org/10.71374/jfar.v25.i6.24>

Date of receipt revision: 30th Oct., 2025

Date of approval: 20th Nov., 2025

1. Introduction

Agribank, a leading state-owned bank in Vietnam, has consistently achieved strong business results while navigating economic challenges. In 2023, the bank surpassed its financial goals, with total assets exceeding 2 trillion VND and a loan portfolio of 1.55 trillion VND, 65% of which was allocated to agriculture and rural development. Agribank maintains a robust credit profile with low non-performing loans and increasing service fee revenues, showcasing its effective management. Beyond financial growth, Agribank emphasizes sustainability and corporate responsibility through ESG (Environmental, Social, and Governance) initiatives. The bank focuses on sustainable banking, digital transformation, and diversifying product offerings, supporting small and medium-sized enterprises (SMEs), and fostering financial inclusion via modern banking technologies. Agribank also seeks to improve customer experience and promote financial education, partnering with fintech, e-commerce platforms, and other sectors. These efforts not only drive its financial success but also support Vietnam's socio-economic development.

2. Literature review

Non-financial performance measures evaluate intangible factors that significantly impact the long-term success of businesses and organizations, such as innovation, management capabilities, human relations, and brand value. These factors are not reflected on the balance sheet but crucial to a company's market value (Ittner, 2000).

Using non-financial indicators offers many benefits. They help businesses identify and address issues related to internal processes or customer satisfaction that financial metrics cannot reveal. Furthermore, non-financial indicators can serve as a forecasting tool for future financial performance. Investments that enhance customer satisfaction and research development may improve long-term financial results, even

if they don't generate immediate profits (Ittner, 2000).

Common non-financial indicators include customer retention rates, employee satisfaction, product defect rates, process performance, and social and environmental responsibility criteria. Additional significant non-financial indicators include innovation in new products or services, employee retention rates, and commitment to ethical and social standards. These indicators help businesses focus on creating long-term value and reducing dependence on short-term profits (Ittner, 2000).

Despite their advantages, the application of non-financial indicators also presents challenges. One of the biggest issues is the cost and time involved in their implementation. Systems tracking non-financial indicators can be expensive and complex, requiring significant investment in technology infrastructure and data management. Moreover, non-financial metrics often lack standardization, making it difficult to compare companies (Ittner, 2000). Additionally, businesses may struggle to link non-financial indicators with financial objectives or actual outcomes, potentially leading to resource wastage if not managed effectively.

Non-financial performance measures in the banking sector play a key role in understanding the success of business activities beyond financial profits. These measures often include customer satisfaction, customer loyalty, and factors related to processes and service quality. Here are some analyses of these metrics:

Customer Satisfaction: One of the most important metrics for banks, reflecting customers' perceptions of the services provided. Metrics such as Client Survey Scores help banks capture customer feedback on aspects like communication, product variety, and service speed. Customer satisfaction not only drives loyalty but also acts as an indicator of future financial performance (Eklof et al., 2017).

* University of Labour and Social Affairs; email: donamhung@outlook.com

Customer Loyalty: This metric is crucial for determining how likely customers are to continue using a bank's services long-term. Research indicates that improving digital experiences and offering personalized products can enhance the Net Promoter Score (NPS), a common measure of loyalty. Factors like proactive ESG initiatives can also affect customer loyalty.

Process Quality: Other service quality indicators include average resolution time for issues and error rates in setting up new accounts. These factors directly impact customer experience and can diminish satisfaction if not well-managed. Banks often monitor and continuously improve internal processes to minimize mistakes and reduce issue resolution times.

Employee Engagement and Development: Metrics like turnover rates, average time to hire, and internal promotion rates measure a bank's success in attracting, retaining, and developing talent. High engagement levels typically lead to better customer service, innovation, and organizational growth. Additionally, monitoring compensation structures helps banks maintain competitive positions in a tight labor market, which is critical for maintaining a motivated and productive workforce (Ittner, 2000).

Sustainability Commitment (ESG Performance): ESG performance has become an increasingly important non-financial factor as more customers prioritize banks with strong environmental and social responsibility practices. A bank with a solid sustainability strategy is more likely to attract and retain a large, loyal customer base, particularly from younger generations.

Factors Affecting the Implementation of Business Performance Evaluation Systems in Banks

The competitive business environment reflects the complexity of the industry in which an organization operates (Thong, 1999). Each industry has unique characteristics, and in the banking sector, the competition for products is intense, with customers easily changing their service preferences. Cao Thị Huyền Trang (2020) discusses competition, including the need to address both input and output challenges related to raw materials, human resources, product quality, service, pricing, distribution channels, and product diversification. In a highly competitive environment, businesses must improve decision-making processes and operational control to better meet customer needs (Abdel-Kader & Luther, 2008). The level of competition in the business environment positively impacts the implementation of business performance evaluation systems in the banking sector. Thus, the research proposes the following hypothesis:

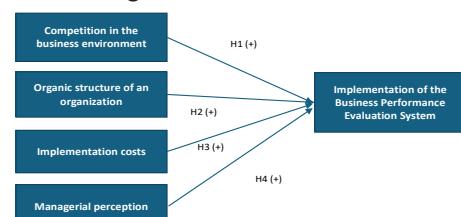
Hypothesis H1: The competitiveness of the business environment positively affects the implementation of the business performance evaluation system at Agribank.

Corporate structure is a crucial aspect that the contingency theory addresses when it comes to business issues. Companies with clear hierarchical structures and decentralization allow for better operational control and

flexibility in decision-making, which enhances the efficiency of business performance evaluation systems (Ghorbel, 2017). The organic structure of a company facilitates better information flow across departments, helping ensure that the performance evaluation system effectively supports decision-making. The research proposes the following hypothesis:

Hypothesis H2: A higher degree of decentralized corporate structure positively impacts the implementation of the business performance evaluation system at Agribank.

Implementing a business performance evaluation system requires significant initial and ongoing costs related to technology, equipment, consulting services, and employee training. Organizations need to carefully assess the costs versus the benefits of implementing the system. If the technology investment is low but the short- and long-term benefits are high, businesses will more easily proceed with implementation. In contrast, when high investment is required, especially in the banking sector's digital transformation, the long-term benefits justify the allocation of resources. Generally, when a bank allocates a higher budget for performance evaluation system investments, the implementation level will be higher. Hence, the research proposes the following hypothesis:


Hypothesis H3: The higher the investment in implementing the performance evaluation system, the higher the level of implementation at Agribank.

Management awareness in organizations reflects knowledge, skills, and the attention of management levels to the implementation of business performance evaluation systems. High-level managers play a pioneering role in guiding the implementation, and it is essential to raise awareness among all management levels for successful execution (Ngô Thé Chi & Ngô Văn Luong, 2018). To successfully implement the performance evaluation system at Agribank, it is crucial to enhance the awareness of managers about the benefits and effectiveness of the system. Therefore, the following hypothesis is proposed:

Hypothesis H4: The awareness of managers positively affects the implementation of the performance evaluation system at Agribank.

A research model

Figure 1. Research model

3. Agribank's Business Performance Based on Non-Financial Indicators

With the results of the business performance measurement system implementation at Agribank, some

applications are widely used, while others are less frequently applied (Table 1 and Figure 2). This reflects the fact that in different localities, branch sizes, or organizational units, there are variations in the level of implementation of various management systems for efficiency. This study is based on the Contingency Theory (also known as the Random Theory, etc.) to explain and analyze the influencing factors (Phan Thanh Tú, Vũ Mạnh Chiên, Pham Văn Kiêm, Lưu Đức Tuyễn, & Nguyễn Thị Hồng Nga, 2018).

3.1. Measurement of Research Variables

Table 1. Measuring Research Variables

Variable Code	Scale	Sources
TKHT1	Level of Implementation of the Business Performance Evaluation System	5-Point Likert Scale
TKHT2	Activity-Based Costing (ABC)	
TKHT3	Benchmarking	
TKHT4	Performance Pyramid	
TKHT5	Process Type Theory	
TKHT6	Customer Survey/Investigation	Developed by author
TKHT7	Integrated Management System (MM)	
TKHT8	Customer Observation	
TKHT9	Life Cycle Theory	
TKHT10	Balanced Scorecard	
TKHT11	Cost-to-Income Ratio/Cost Estimation Ratio	
MTKD1	Competition in the Business Environment	5-Point Likert Scale
MTKD2	Competition in the industry regarding raw materials is increasing.	
MTKD3	Competition in the industry regarding human resources is increasing.	
MTKD4	Competition in the industry regarding product/service quality is increasing.	
MTKD5	Competition in the industry regarding the diversity of products/services is increasing.	
MTKD6	Competition in the industry regarding pricing is increasing	
CTDN1	Organizational structure	5-Point Likert Scale
CTDN2	The unit has a management hierarchy for developing new products/services.	
CTDN3	The unit has a management hierarchy for hiring and firing employees.	
CTDN4	The unit has a management hierarchy for purchasing assets.	
CTDN5	The unit has a management hierarchy for setting the pricing of products/services.	
CTDN6	The unit has a management hierarchy for distributing products/services.	
CP1	Cost of implementing the performance evaluation system	5-Point Likert Scale
CP2	High cost of technology investment for implementing the performance evaluation system at the unit.	
CP3	High consulting fees from organizations/experts for implementing the performance evaluation system at the unit.	
CP4	High cost of training human resources to implement the performance evaluation system at the unit.	
NQL1	Management's Perception	5-Point Likert Scale
NQL2	Managers perceive the usefulness of the business performance evaluation system.	
NQL3	Managers perceive the ease of use of the business performance evaluation system.	
NQL4	Managers are aware of the effectiveness of the business performance evaluation systems of other companies.	
NQL5	Managers have high trust in the implementation of the business performance evaluation system.	

Source: Compilation by the author

3.2. Findings and discussion

As for the explanation, the study uses the Cronbach's alpha test to evaluate the reliability of the scale. The results are presented in Table 2.

Table 2. Results of the Cronbach Alpha analysis

Name of variables	Measurement indicator	Cronbach Alpha
Level of implementation of the business performance evaluation system	TKHT1, TKHT2, TKHT3, TKHT4, TKHT5, TKHT6, TKHT7, TKHT8, TKHT9, TKHT10	0,973
Competition in the business environment	MTKD1, MTKD2, MTKD3, MTKD4, MTKD5	0,819
Organizational structure	CTDN1, CTDN2, CTDN3, CTDN4, CTDN5	0,872
Cost of implementing the performance evaluation system	CP1, CP2, CP3	0,875
Manager's awareness	NTQL1, NTQL2, NTQL3, NTQL4	0,890

Source: Compilation by the author

The results show that all the scales ensure reliability, as the Cronbach's alpha coefficients of all the variables are > 0.6 and the correlation of total variables is greater than 0.3. The measurement indicators for the study variables are all used in the following analysis.

Exploratory Factor Analysis (EFA) Results:

The study conducted the analysis for both independent and dependent variables with the Varimax rotation method for two separate runs for the two groups of variables.

Results of the Independent Variables Analysis:

The EFA results for the independent variables are presented in Table 3. The result with the KMO coefficient $= 0.730 > 0.5$ and the sig. coefficient $= 0.000$ indicates that the data fits the theoretical model. The Eigenvalue stopped at 1, loading onto 3 factor groups. These factor groups are represented as follows:

Organizational Structure Group (CAUTRUC): from CTDN1 to CTDN5

Business Environment Group (MOITRUONG): from MTKD1 to MTKD5

System Implementation Cost Group (CHIPHI): from CP1 to CP3

Management Awareness Group (NTNQL): from NTQL1 to NTQL4

Results of the Dependent Variables Analysis:

The EFA results for the dependent variables are presented in Table 3. The result with the KMO coefficient $= 0.753 > 0.5$ and the sig. coefficient $= 0.000$ indicates that the data fits the research model, and the indicators load onto only one factor group.

The study conducted to calculate the representative value for the factor group:

System Performance Evaluation Implementation (THUCHIEN): From TKHT1 to TKHT10 (Table 3, 4)

Multivariate correlation and regression analysis

The results of the multivariate correlation and regression analysis are presented in Table 5.

Table 3. Results of the Independent Variables EFA Analysis

KMO and Bartlett's Test		Total Variance Explained					
Component		Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	Kaiser-Meyer-Olkin Measure of Sampling Adequacy	7.30			3.944	23.203	19.742
2	Bartlett's Test of Sphericity	957.195			3.436	20.451	39.144
3					2.836	16.683	59.991
4					2.836	16.683	59.991
5					1.754	10.318	70.309
6					1.36		
7					.941	5.538	75.847
8					.761	4.474	80.322
9					.571	3.418	83.734
10					.459	2.699	86.372
11					.409	2.407	88.779
12					.398	2.338	91.117
13					.339	1.997	93.114
14					.257	1.265	94.360
15					.228	1.343	96.204
16					.213	1.251	97.454
17					.177	1.040	98.494
					.172	1.012	99.506
					.084	.494	100.000

Extraction Method: Principal Component Analysis.

		Rotated Component Matrix*			
		1	2	3	4
CTDN5		.900			
CTDN1		.828			
CTDN4		.825			
CTDN2		.771			
CTDN3		.725			
NTQL4		.885			
NTQL2		.878			
NTQL3		.848			
NTQL1		.806			
MTKD3			.877		
MTKD4			.865		
MTKD2			.734		
MTKD5			.705		
MTKD1			.576		
CP2				.929	
CP1				.901	
CP3				.825	

Extraction Method: Principal Component Analysis.

a. Rotation converged in 5 iterations.

Source: Author's calculations from SPSS

Table 4. Results of EFA analysis for dependent variables

KMO and Bartlett's Test			
Kaiser-Meyer-Olkin Measure of Sampling Adequacy			.753
Bartlett's Test Approx. Chi-square			1909.514
df			45
Sig.			0.000

Total Variance Explained							
Component	Initial Eigenvalues			Extraction Sums of Squared Loadings			Cumulative %
	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	
1	8.081	65.636	80.808	8.081	65.636	80.808	
2	.761	6.208	87.001				
3	.444	4.436	92.337				
4	.373	3.732	96.069				
5	.175	.174	97.816				
6	.103	.103	98.320				
7	.058	.058	99.414				
8	.048	.048	99.889				
9	.039	.039	99.969				
10	.003	.003	100.000				

Extraction Method: Principal Component Analysis	
Component Matrix ^a	Component
TKH1	.922
TKH15	.921
TKH10	.917
TKH14	.918
TKH16	.910
TKH17	.894
TKH13	.887
TKH12	.883
TKH1	.819

Source: Author's calculations from SPSS

The results show that the explanatory power of the research model is 42.1% with an R-square of 0.421. The F-test result is 16.888 with a significance level of 0.000, indicating that the model is entirely suitable for analysis.

The regression results show that two independent variables, including the competitiveness in the business environment (MOITRUONG) and the perception of managers (NTNQL), have a statistically significant positive impact on the implementation of the business performance evaluation system. This confirms that the competitive business environment in the banking sector, with competitors in terms of products, services, and business processes, has driven the implementation of the performance evaluation system to provide Agribank with quick information for system control and business decision-making. Notably, the Beta coefficient for the manager's perception variable is $\beta = 0.539$, which has the most significant impact on the implementation of the business performance evaluation system at the units. These results are consistent with previous studies by other authors regarding the implementation of systems at different units.

Table 5. Results of correlation and regression analysis

Correlations						
	MOITRUONG	CAUTRUC	NTNQL	CHPHI	THUCHIEN	
MOITRUONG	1	.050	.282	.215	.391	
Pearson Correlation		.628	.620	.600	.600	
Sig. (2-tailed)		.98	.98	.98	.98	
CAUTRUC		1	.007	.087	-.077	
Pearson Correlation		.628	.942	.395	.454	
Sig. (2-tailed)		.98	.98	.98	.98	
NTNQL			1	.119	.594	
Pearson Correlation		.282	.007	.300	.200	
Sig. (2-tailed)		.98	.942	.98	.98	
CHPHI				1	.053	
Pearson Correlation		.215	.087	-.119	1	
Sig. (2-tailed)		.033	.395	.243	.605	
THUCHIEN					.000	
Pearson Correlation		.391	-.077	.534	.053	1
Sig. (2-tailed)		.000	.454	.000	.605	
N		98	98	98	98	98

**. Correlation is significant at the 0.01 level (2-tailed).

*Correlation is significant at the 0.05 level (2-tailed).

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin-Watson
1	.649 ^a	.421	.396	54322	1.752

a. Predictors: (Constant), CHPHI, CAUTRUC, NTNQL, MOITRUONG

b. Dependent Variable: THUCHIEN

ANOVA^a

Model	Sum of Squares	df	Mean Square	F	Sig.
1	19.934	4	4.983	16.888	.000 ^b
Regression	1.107	1	1.107	2.636	.042
Residual	2.323	3	.774	2.227	.167
Total	41.270	6		295	

a. Dependent Variable: THUCHIEN

b. Predictors: (Constant), CHPHI, CAUTRUC, NTNQL, MOITRUONG

Coefficients^a

Model	Unstandardized Coefficients		Standardized Coefficients		Collinearity Statistics		
	B	Std. Error	Beta	T	Sig.	VIF	
1	(Constant)	1.107	.536	2.084	.042		
	MOITRUONG	.232	.087	.227	.2668	.009	.857
	CAUTRUC	-.102	.082	-.059	-.243	.217	.991
	NTNQL	.429	.082	.539	.6436	.000	.887
	CHPHI	.087	.072	.071	.330	.355	.913

a. Dependent Variable: THUCHIEN

Source: Author's calculations from SPSS

The research did not find a statistically significant relationship between the organizational structure factor and the cost of implementing the system in relation to the implementation of the business performance evaluation system at Agribank.

The results of the research hypotheses are summarized as follows:

Table 6. Summary Table of the Results of the Research Hypotheses

Hypotheses	Content of the Hypothesis	Results
H_1	The competitiveness of the business environment has a positive impact on the implementation of the business performance evaluation system at Agribank	Accepted
H_2	A high degree of organic hierarchical structure in the organization will have a positive impact on the implementation of the business performance evaluation system at Agribank.	Rejected
H_3	The higher the costs incurred to implement the system, the greater the degree of implementation of the business performance evaluation system	Rejected
H_4	The managers' perception has a positive impact on the implementation of the business performance evaluation system at Agribank	Accepted

4. Conclusion

From the research results above, the regression equation can be written as follows:

$$\text{TRIENKhai} = 1,107 + 0,232 \text{ MOITRUONG} + 0,529 \text{ NTNQL}$$

The findings indicate that both the competitiveness of the business environment and managers' perceptions have a positive impact on the implementation of the business performance evaluation system at Agribank. Specifically:

Competitiveness of the Business Environment: The competitive pressures from rivals in terms of products, services, and business processes encourage Agribank to adopt a performance evaluation system to quickly gather information for decision-making and control. This competitive environment prompts the bank to use performance evaluations to improve efficiency and stay competitive.

Managers' Perception: Managers' awareness of the utility, ease of use, and effectiveness of the business performance evaluation system significantly influences its adoption. A higher level of trust in the system's effectiveness boosts the likelihood of its successful implementation across different branches or units within Agribank.

These results are consistent with previous studies that highlight the role of both external market pressures and internal managerial support in driving the adoption of performance management systems.

References:

Phan Thanh Tú, Vũ Mạnh Chiến, Phùng Văn Kiêm, Lưu Đức Tuyên, & Nguyễn Thị Hồng Nga. (2018). Lý thuyết và ứng dụng trong nghiên cứu kinh doanh. Nhà xuất bản Kinh tế.

John, D., & Smith, A. (2020). Economic theories and practices in digital banking. *Journal of Finance and Economics*, 12(3), 45-59.

World Bank. (2021). *Global Economic Outlook*. World Bank Publications.

Vietnam Ministry of Finance. (2022, June 15). *Digital banking in Vietnam: Trends and challenges*. Ministry of Finance. <https://www.mof.gov.vn/digital-banking>

Nguyen, H. (2019). *Developing banking efficiency systems in Vietnam* (Unpublished doctoral dissertation). Hanoi University of Economics.

e-finance management. (2024). *Non-financial Performance Measures - Meaning, Importance and More*. Retrieved from <https://efinancemanagement.com/financial-analysis/non-financial-performance-measures>

Itner, C. (2000). *Non-financial Performance Measures: What Works and What Doesn't*. Retrieved from <https://knowledge.wharton.upenn.edu/podcast/knowledge-at-wharton-podcast/non-financial-performance-measures-what-works-and-what-doesnt/>

Eklof, J., Hellstrom, K., Malova, A., Parmer, J., & Podolnykova, O. (2017). Customer perception measures driving financial performance: theoretical and empirical work for a large decentralized banking group. *Measuring Business Excellence*, 21(3), 239-249.

Ghorbel, J. (2017). *A Study of Contingency Factors of Accounting Information System Design in Tunisian SMEs*. *Journal of the Knowledge Economy*, 1-30. doi:<https://doi.org/10.1007/s13132-016-0439-8>

Cao Thị Huyền Trang. (2020). *Tổ chức kế toán trách nhiệm tại các đơn vị trực thuộc Tổng công ty cổ phần Bia - Rượu - Nước giải khát Sài Gòn*. (Luận án tiến sĩ), Học viện Tài chính.