No. 05 (36) - 2025 STUDY EXCHANGE

FACTORS AFFECTING CUSTOMERS INTENTION TO USE OMNICHANNEL APPROACH WHEN PURCHASING AT CHAIN STORES IN HO CHI MINH CITY

Assoc.Prof.PhD. Pham Hung Cuong* - Nguyen My Hong Thi** - Nguyen Hoang Long***

Abstract: After completing 1 month of data collection from October to November 2024 in Ho Chi Minh city with 270 responses were received, filtering 250 valid responses, and data analysis was conducted. The study used SPSS software to analyze data and test scales and hypotheses. The research has successfully accomplished its objective of factors affecting customers intention to use omnichannel approach when purchasing at chain stores in Ho Chi Minh City: (1) Perceived Value, (2) Habit, (3) Perceived Risk, (4) Perceived Compatibility, (5) Personal Innovativeness, (6) Perceived Usefulness and (7) Purchase Intention.

· Keywords: omnichannel, chain stores.

JEL codes: M31, C83, D12, L81

Date of receipt: 27th Mar., 2025

Date of delivery revision: 03rd Apr., 2025

DOI: https://doi.org/10.71374/ifar.v25.i5.11

1. Introduction

Under the impact of digital transformation, the retail sector is compelled to comprehensively change from sales methods to system operations due to shifts in consumer behavior. The growing adoption of omnichannel retail brings not only opportunities but also concerns related to pricing, service quality, payment security, and personal data leakage. Therefore, an effective omnichannel strategy must focus on the entire customer experience and encourage consumer acceptance of new technologies. Studying customer perspectives on this model, especially at chain stores in Ho Chi Minh City, is essential to better understand shopping behavior and develop appropriate strategic directions.

2. Review of literature

Theory of Planned Behavior (TPB) was developed by Ajzen (1991) from Theory of Reasoned Action, by adding the factor of "perceived behavioral control" into the original Theory of Reasoned Action (TRA) by Fishbein and Ajzen (1975, 1980s). To prove the necessity of such addition, Ajzen conducted 16 different studies which all confirm the impact of perceived behavioral control on actual behavior.

Fundamentally, Theory of Planned Behavior is an extension of Theory of Reasoned Action, with the addition of "perceived behavioral control". The purpose of is "perceived behavioral control" to reflect the level of ease or difficulty experienced by users when carrying out the actual behaviors. Such a level of Date of receipt revision: 10th Jun., 2025 Date of approval: 28th Jul., 2025

ease or difficulty depends on availability of resources and opportunities to carry out actual behaviors.

The Technology Acceptance Model (TAM), developed by Davis in 1989 and derived from the Theory of Reasoned Action (TRA), aims to explain users' acceptance of information technology. The model focuses on two main beliefs: perceived usefulness (the extent to which a person believes that using a system will enhance job performance) and perceived ease of use (the degree to which a person believes that using the system will be effortless or save time). These beliefs are influenced by external variables, including social influence and individual experiences with technology.

In a later refinement, Davis (1989) emphasized that perceived usefulness plays a central role in shaping users' behavioral intentions. The model suggests that when both perceived usefulness and ease of use are high, users are more likely to adopt new technologies. Conversely, low levels of these beliefs lead to resistance. Given its relevance, TAM serves as a foundational framework for the author's research model.

To unify diverse streams in technology acceptance research, the Unified Theory of Acceptance and Use of Technology (UTAUT) was developed by Venkatesh et al. (2003), integrating eight competing models. Earlier studies, including those by Davis (1989), Ajzen (2011), and Moore & Benbasat (1991), focused on psychological and innovation-specific factors, but often lacked a comprehensive, generalizable framework.

^{*} Foreign Trade University; email: phamhungcuong.cs2@ftu.edu.vn

^{**} La Trobe University; email: 22159801@students.latrobe.edu.au

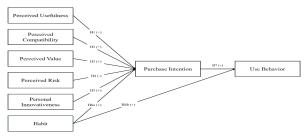
^{***} Foreign Trade University, Ho Chi Minh City Campus; email: nguyenhoanglong2015535299@ftu.edu.vn

UTAUT addressed this gap by identifying four core constructs performance expectancy, effort expectancy, social influence, and facilitating conditions as key determinants of behavioral intention, with moderating effects from age, gender, experience, and voluntariness of use. Recognizing the need for an updated model in the evolving consumer technology landscape, Venkatesh et al. (2012) introduced UTAUT2, which added hedonic motivation, price value, and habit, while removing voluntariness.

A foundational framework for understanding how innovations spread across social groups is Innovation diffusion theory (IDT). The theory outlines five stages in the adoption process awareness, interest, evaluation, trial, and adoption and categorizes adopters into innovators, early adopters, early majority, late majority, and laggards. (Wani et al. 2015)

Key factors influencing adoption include perceived usefulness, social influence, and ease of use. Building on Rogers' work, Moore and Benbasat (1991) refined the model for technology adoption, while Agarwal and Prasad (1998) emphasized the role of personal innovativeness and trust. In the omnichannel context, where consumers interact with multiple technologies across platforms, understanding individual openness to innovation is crucial for predicting and promoting technology adoption.

The study Omnichannel Customer Behavior: Key Drivers of Technology Acceptance and Use and Their Effects on Purchase Intention (Juaneda Ayensa, E. et al., 2016) examines the factors influencing customers' intention to adopt omnichannel shopping. Based on the UTAUT2 model, with the addition of Personal Innovativeness (PIN) and Perceived Security (PS), data were collected from 628 Spanish Zara customers using at least two shopping channels. Findings reveal that PI, Effort Expectancy (EE), and Performance Expectancy (PE) significantly impact purchase intention, with PI being the strongest predictor ($\beta = 0.310$, p < 0.05). In contrast, Social Influence (SI), Habit (HB), Hedonic Motivation (HM), and PS showed no significant effect. The study concludes that customers' willingness to embrace innovation is the key driver of omnichannel purchase intention.


Vu Thi Kim Chi et al., 2021 employed the UTAUT2 framework to examine key influences on omnichannel shopping behavior. Based on survey data from 433 consumers and analyzed using SEM in SPSS 20 and AMOS 20, the research identified Perceived Usefulness (PU) and Compatibility (PC) as the most impactful factors. Notably, Compatibility (β = 0.305) and Perceived Risk (β = -0.165) significantly influenced Purchase Intention, while Cost (β = 0.128)

had a moderate effect. Habit (HB), however, showed no meaningful impact ($\beta = 0.038$, p = 0.489) and was statistically rejected. The study further confirmed a positive link between Purchase Intention and Actual Use ($\beta = 0.146$, p = 0.004). Overall, the findings highlight that aligning retail channels with consumers' needs and minimizing perceived risks are critical to encouraging omnichannel adoption in Hanoi.

3. Proposed research model and hypothesis

Based on the previous research and hypotheses, the author concludes the research model below, inheriting the framework of UTAUT2 model and incorporating personal innovativeness factor. The model includes 6 independent variables, one mediating variable and one dependent variable. The relationship between the variables is shown below (Figure 1).

Figure 1: Proposed research model and hypotheses

Source: Self-deprived by authors, 2024

Hypothesis

- **H1.** Perceived usefulness has positively affected customers' purchase intention through omnichannel approach in chain stores at Ho Chi Minh City.
- **H2.** Perceived compatibility has positively affected customers' purchase intention through omnichannel approach in chain stores at Ho Chi Minh City.
- **H3.** Perceived value has positively affected customers' purchase intention through omnichannel approach in chain stores at Ho Chi Minh City.
- **H4.** Perceived risk has negatively affected customers' purchase intention through omnichannel approach in chain stores at Ho Chi Minh City.
- **H5.** Personal innovativeness has positively affected customers' purchase intention through omnichannel approach in chain stores at Ho Chi Minh City.
- **H6(a).** Habit has positively affected customers' purchase intention through omnichannel approach in chain stores at Ho Chi Minh City.
- **H6(b).** Habit has positively affected customers' use behavior through omnichannel approach in chain stores at Ho Chi Minh City.
- **H7.** Purchase Intention has positively affected customers' use behavior through omnichannel approach in chain stores at Ho Chi Minh City.

No. 05 (36) - 2025 STUDY EXCHANGE

4. Research methodology

Data collection took place over a span from October to November, 2024 in Ho Chi Minh city, utilizing Google Forms methods. The focus participants are in Ho Chi Minh City and has either acknowledged or been familiar with omnichannel model and chain stores. In total, out of the 270 responses received, 250 responses are utilized for subsequent statistical analysis.

5. Results

Cronbach's alpha coefficient test

The results show that all independent variables have Cronbach's coefficients that meet the criteria, all are greater than 0.6 and less than 0.95. At the same time, the total correlation coefficient of the observed variables is greater than 0.3, so all variables are retained for subsequent testing (Table 1).

Table 1. Cronbach's Alpha coefficients result of the official study

Variables	Abbreviations	Cronbach's Alpha	N of Items
Perceived Usefulness	PU	0.844	4
Perceived Compatibility	PC	0.827	3
Perceived Value	PV	0.746	3
Perceived Risk	PR	0.870	4
Habit	НВ	0.838	3
Personal Innovativeness	PIN	0.832	4
Purchase Intention	PI	0.847	4
Use Behavior	UB	0.857	4

Source: SPSS result (2024)

Exploratory factor analysis (EFA)

The KMO coefficient for the independent variables is 0.791, satisfying the condition KMO \in [0.5; 1], indicating that the dataset is suitable for factor analysis. Additionally, the significance value (Sig.) of Bartlett's Test is 0.000 < 0.05 (5%), demonstrating that the observed variables meet the requirements for factor analysis and that there is a correlation among the observed variables within each group of factors or independent variables. The Eigenvalue is 1.286 > 1, confirming that the number of factors identified in the scale for EFA is appropriate and can be retained. The total variance explained is 72.002%, which exceeds the threshold of 50.00%, as shown in Table 2.

Table 2. KMO, Bartlett's Test and Sums of Squared Loading

	кмо	Sig.	Eigenvalue	TVA
Independent variables	0.791	0.000	1.286	72.002%
Dependent variables	0.778	0.000	2.809	70.235%
			Course: CE	SS warmilton 2024

The KMO coefficient for the dependent variable is 0.778, also meeting the requirement of KMO \in [0.5;1]. Furthermore, the significance value (Sig.) of Bartlett's Test is 0.000 < 0.05 (5%), indicating a correlation among the observed variables within the factor group of the dependent variable, and confirming that the variables are eligible for factor analysis. Moreover, the Eigenvalue is 2.809 > 1, which implies that this factor can be retained. The total variance explained is

70.235%, which is greater than 50.00%, satisfying the established criterion (Table 2).

Pearson Correlation Coefficient Test

The results of the correlation analysis in Appendix reveal significant positive correlations between the dependent variable (Use Behavior - UB) and most independent variables, suggesting that as UB increases, so do perceptions of Perceived Usefulness (PU), Perceived Compatibility (PC), Perceived Value (PV), Habit (HB), and Personal Innovativeness (PIN). The strongest positive correlation is with Purchase Intention (PI) at .517, indicating that intention is particularly impactful on use behavior.

Additionally, there is a notable negative correlation with Perceived Risk (PR) at -.381, suggesting that as perceived risks increase, use behavior decreases. All Sig. values of the correlation coefficients are below 0.05, confirming that the Pearson coefficients are statistically significant. This indicates that each pair of independent and dependent variables in the model is closely correlated.

Therefore, all independent variables are eligible for inclusion in the next step of the analysis, the regression model, to further explain the dependent variable UB. Moreover, some independent variables show moderate correlations among themselves, such as between Perceived Compatibility (PC) and Habit (HB), with a Pearson coefficient of .387. Thus, it will be essential to check for potential multicollinearity issues between independent variables during the regression analysis.

Multiple Regression Analysis

The adjusted R-square value is 63%, indicating the research model's ability to explain 63% of the impact of factors within a physical store on purchase intention of young customers in Ho Chi Minh City when buying clothing products. The other 37% depend on factors undefined or not included in the research model.

According to the ANOVA analysis, if the Sig. value equal 0.000 < 0.05 at F = 35.304 then H0 is rejected. Therefore, it can be deduced that there is at least one among the proposed variables influencing the purchase intention of young customers in Ho Chi Minh City when buying clothing products.

The results show that the significance levels (Sig.) for all independent variables affecting PI are less than 0.05, allowing us to confidently reject the null hypothesis that "the regression coefficient of each variable is equal to 0". This indicates that the variables PU, PC, PV, PR, HB, and PIN significantly explain the dependent variable, Purchase Intention (PI).

Regarding the relation between PI, HB and UB, the significance level (Sig.) for PI is less than 0.05, allowing us to confidently reject the null hypothesis that "the regression coefficient of PI is equal to 0". This

indicates that PI significantly explains the dependent variable, Use Behavior (UB). However, the effect of HB is less definitive due to a Sig. value of 0.054, which is marginally above the significance threshold.

Regarding PI variable, the OLS regression results yield an R² value of 0.347. The adjusted R², which is less affected by the exaggerated deviation of R², provides a closer reflection of the model fit. The adjusted R² value of 0.332 indicates that the six independent factors explain 33.2% of the variance in the dependent variable (PI - Purchase Intention). The remaining 66.8% variation in PI is due to other factors, including measurement errors and unknown or unaccounted-for variables.

Regarding the UB variable, the Adjusted R² value of 0.272 indicates that the two independent factors (PI - Purchase Intention and HB - Habit) explain 27.2% of the variance in the dependent variable (UB - Use Behavior). The remaining 72.8% of variation in UB is due to other factors, including measurement errors and unknown or unaccounted-for variables.

In conclusion, the standardized linear regression equation of the model after analysis is as follows:

$$PI = 0.215*PV + 0.191*HB - 0.164*PR + 0.155*PC + 0.129*PIN + 0.115*PU + \varepsilon$$

 $UB = 0.475*PI + 0.107*HB + \varepsilon$

Table 3. Coefficients table in regression analysis

	Model	Unstandardized odel Coefficients		Standardized Coefficients	t	Sig.	Collinearity Statistics	
		β	Std. Error	β			Tolerance	VIF
	(Constant)	1.069	.403		2.650	.009		
	PU → PI	.116	.054	.115	2.143	.033	.829	1.207
	PC → PI	.148	.052	.155	2.865	.004	.811	1.234
1	PV → PI	.240	.059	.215	4.057	.000	.851	1.175
	PR → PI	167	.054	164	-3.062	.002	.833	1.200
	HB → PI	.184	.055	.191	3.372	.001	.741	1.350
	PIN → PI	.132	.057	.129	2.319	.021	.774	1.292
2	(Constant)	1.384	.231		5.997	.000		
	PI → UB	.481	.056	.475	8.573	.000	.847	1.181
	HB → UB	.105	.054	.107	1.938	.054	.847	1.181

Source: SPSS results, 2024

The purpose of analyzing the influence of qualitative variables on the use behavior (UB) of customers is to demonstrate the level of discrepancy in usage behavior among different target groups in the same attributes. To analyze the effect of qualitative variables, the authors utilized the average test method - ANOVA for each attribute: gender, occupation, income and product category. There are two steps in conducting ANOVA: firstly, the tested element must meet the homoskedastic criteria, which means there is no difference in variance of the object groups in the same attribute. At this moment, the Sig. of the Levene value must be greater than 0.05. Secondly, the Sig. coefficient of the ANOVA test must be checked if it is less than 0.05, therefore, we can confirm the difference in usage behavior among groups studied.

From the data analyzed by SPSS, it can be seen that in the qualitative variables including Gender,

Age, Income and Product categoy purchased via omnichannel, there is no difference in Omnichannel shopping behavior. This conclusion is drawn from the fact that the Sig. values of these variables in the Levene test and F test are all > 0.05. This result shows that there is no difference in omnichannel shopping behavior between men and women and other genders. There is little difference preference among age group regarding omnichannel shopping. Different occupations do not indicate significant differences in the way they shop via omnichannel. Income level is not a determining factor in the difference in omnichannel shopping behavior. The type of product frequently purchased via omnichannel does not affect the difference in consumer shopping behavior. The avarage speding does not have large effect on customer's omnichannel shopping opinion.

Table 4. ANOVA TEST

	Sig. of Levene	Sig. of ANOVA
Gender	0.432	0.916
Age	0.294	0.314
Occupation	0.603	0.772
Income	0.574	0.184
Product Category	0.528	0.148
Average Spending	0.852	0.105

Source: Authors compiled from SPSS, 2024

It can be concluded that the study did not find significant differences according to these qualitative variables in omnichannel shopping behavior, therefore, these factors may not be strong determinants in shaping omnichannel shopping behavior.

6. Conclusions and implications

6.1. Conclusions

After completing 1 month of data collection, 270 responses were received, with 250 valid responses, and data analysis was conducted. The study used SPSS software to analyze data and test scales and hypotheses. The research has successfully accomplished its objective of factors affecting customers intention to use omnichannel approach when purchasing at chain stores in Ho Chi Minh City: (1) Perceived Value, (2) Habit, (3) Perceived Risk, (4) Perceived Compatibility, (5) Personal Innovativeness, (6) Perceived Usefulness and (7) Purchase Intention.

6.2. Recommendations

For Company

This is the most influential factor. Customers are primarily concerned with the value they receive relative to the price paid. Retailers can increase perceived value by offering fast, efficient, and enjoyable shopping experiences both pre- and post-purchase. Platforms should also minimize customer costs, including time and effort, while maintaining competitive pricing.

Consumers frequently move between channels during their shopping journey. Retailers should adapt by maintaining a consistent presence across platforms *No.* 05 (36) - 2025 STUDY EXCHANGE

like Shopee, Lazada, and TikTok Shop. Aligning with consumer habits, while ensuring consistency and convenience between channels, is essential to boosting conversions.

Customers are more likely to purchase when their values align with the brand. Personalization plays a crucial role - from product recommendations to acknowledging customer milestones. Younger consumers, in particular, value sustainability, health, and smart consumption, pushing retailers to provide transparent product information and environmentally conscious practices. The rise of "shopper entertainment" (integrating shopping with entertaining content) is also shaping customer engagement.

Consumers in dynamic markets are open to trying new technologies. Retailers should adopt innovations like AR, AI, and live chat support to create engaging and interactive experiences. Investing in IT and training staff for adaptability is also important.

Although it has the least impact among the factors, perceived usefulness still plays a role. Customers prefer platforms that are practical and easy to navigate. Retailers should streamline operations across channels, ensure cross-device compatibility, and offer features like real-time inventory updates and omnichannel loyalty programs.

This negatively impacts purchase intention. Security in transactions and data handling is critical. Businesses must build trust through secure platforms, transparent policies, and user reviews that validate product authenticity and reliability.

A strong purchase intention often leads to actual buying behavior. However, external influences social, cultural, or economic can moderate this. To convert intention into action, retailers should focus on simplifying customer journeys, optimizing select platforms, and building a trustworthy brand image.

For customers

The development of omnichannel retail in Vietnam has rapidly advanced, especially due to the COVID-19 pandemic, which compelled both retailers and consumers to shift toward digital platforms. With physical store closures and movement restrictions during the pandemic, retailers were forced to adopt online sales strategies to survive, while consumers became increasingly accustomed to shopping online. As a result, the need for seamless integration between online and offline channels grew stronger.

Beyond the pandemic, Vietnam's growing internet penetration, widespread use of mobile devices, and fast-paced digital transformation have contributed to the expansion of omnichannel retailing. Vietnamese consumers today expect convenience, flexibility, and personalization in their shopping experiences, and businesses are under pressure to meet these expectations through integrated systems and smart technologies.

For customers, the omnichannel model offers numerous benefits. It enhances the shopping experience by allowing for quick product searches, cross-platform comparisons, and real-time access to reviews and product details. Chain stores often act as fulfillment centers, enabling faster deliveries and local pickups, which saves time and increases convenience. The ability to switch between online and offline channels provides greater flexibility and supports informed decision-making.

Customers engaging with omnichannel platforms experience a more personalized and efficient journey. For example, they can browse products online, check in-store availability, choose home delivery or in-store pickup, and easily compare prices and promotions. These combined experiences improve accessibility, simplify the buying process, and help customers find products that best meet their needs.

However, omnichannel retailing also introduces certain risks. Financially, retailers face the challenge of investing in technologies and infrastructure needed to support omnichannel operations. If systems are not well-integrated, businesses may not see the expected return on investment. On the consumer side, the ease of shopping across platforms can lead to impulsive buying and overspending.

Data security is another major concern. With customer data collected across various platforms, including personal and payment information, the risk of cyberattacks and data breaches increases. Retailers must implement strong security protocols, while consumers should take care to shop only on trusted platforms and be cautious about the data they share.

Another potential drawback is overbuying. Because omnichannel retail makes shopping so easy and accessible, consumers may purchase more than they need, which can lead to buyer's remorse, financial strain, and complications with returns especially if policies vary by channel.

References:

Agarval, R. & Prasad, J. (1998). A conceptual and operational definition of personal innovativeness in the domain of information technology. Information systems research, 9(2), 204-215.

Ajeen, I. (2011). The theory of planned behaviour: Reactions and reflections. Psychology & health, 26(9), 1113-1127.

Ajeen, I., & Fishbein, M. (1975). A Bayesian analysis of attribution processes: Psychological bulletin, 82(2), 261-275. Ájzen, Í., & Fishbein, M. (1980). Understanding attitudes and predicting social behavior, Englewood Cliffs, NJ: Prentice-

Ajzen, I., 1991. The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211.

Davis, F. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 45(9), 213-120.

Juneda-Ayensa, E., Mosquera, A., & Sierra Murillo, Y. (2016). Omnichannel customer behavior: key drivers of

technology acceptance and use and their effects on purchase intention. Frontiers in psychology, 7(2), 156-167.

Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information systems research, 2(3), 192-222.

Jenkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a

неяканея, г., мотть, м. С., Danss, с. В., & Davis, F. D. (2018). User acceptance of information technology: Toward a unified view. MIS quarterly, 56(1), 425-478.
Ienkaesh, Г., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS quarterly, 78(2), 157-178.
Vii Thi Kim, С., То Xuán, С., Pham Minh, Anh, Bùi Minh, N., Trân Bình, M., Lê Thi Xuán, M., & Nguyễn Thi Khánh, L. (2021). Những việu tổ ainh thường đến hành vi mua sảm hợp kehh Omnichamel của người tiêu dùng trên địa bàn thành phố Hà Nội. Tạp Chi Kim Tê Và Phát triển, 292(2), 96-101.
Wimit T. A. & Hi S. W. (2018). Innovation diffusion thoma: Lawred of acceptance and acceptance of the College of the College

Wani, T. A., & Ali, S. W. (2015). Innovation diffusion theory. Journal of general management research, 3(2), 101-118.