No. 05 (36) - 2025 STUDY EXCHANGE

WHAT DRIVES GREEN PURCHASE INTENTIONS? ECONOMIC IMPLICATION FOR ENTERPRISES

PhD. Le Thi Thoan* - Nguyen Hoang Nhut* - Tran Le Nguyen**

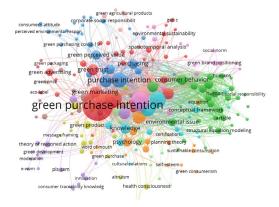
MSc. Tran Phan Doan Khanh***

Abstract: This study investigates key drivers of green purchase intentions among consumers in Ho Chi Minh City, in the context of increasing awareness of sustainability and the green transition. It focuses on three main factors: Drive for Environmental Responsibility, Green Brand Love, and Greenwashing. In addition, the study examines the mediating role of brand love in shaping consumer behavior. Based on survey data from 371 respondents and analysis using SmartPLS software, the findings reveal that all three factors significantly influence green purchase intentions, with Drive for Environmental Responsibility being the strongest predictor. These findings offer not only academic insights into sustainable consumer behavior but also practical economic implications for enterprises seeking to build transparent marketing strategies, enhance consumer trust, and improve their competitive advantage in the green economy.

· Keywords: drives, green purchase intentions.

Date of receipt: 29th Jun., 2025

Date of delivery revision: 15th Jul., 2025 DOI: https://doi.org/10.71374/jfar.v25.i5.04


1. Introduction

In recent years, global environmental issues such as climate change, air pollution, and global warming have become increasingly severe, directly impacting ecosystems and human quality of life (Robinson, 2025). In response to this reality, many enterprises have proactively shifted toward sustainable development by "greening" their production and marketing activities. As a result, environmentally friendly products have gained greater attention and become a top priority for consumer choice. A bibliometric analysis using the Scopus database and VOSviewer software (Figure 1) indicates that various factors influence green purchase intention (GPI), including green marketing, green advertising, trust, environmental knowledge, consumer behavior, and brand-related emotions.

Building on this context, the present study focuses on analyzing the factors influencing green purchase intention (GPI) in Ho Chi Minh City, a dynamic and highly competitive market currently witnessing a growing trend in green consumption. Specifically, the research examines the roles of environmental responsibility drive, green brand love, and greenwashing behavior, while also exploring the mediating effect of green brand love in shaping green purchase intention.

Date of receipt revision: 28th Aug, 2025 Date of approval: 29th Sep., 2025

Figure 1: Bibliometric analysis of studies related to green purchase intention

2. Theoretical foundation and research model

2.1. Theoretical Background

Concept of Green Purchase Intention

Green purchasing reflects the consumer trend of choosing products that have a positive or less harmful impact on the environment throughout their life cycle. In this context, green fast-moving consumer goods (FMCGs) refer to products made from natural or recycled materials, produced using resource-efficient and low-emission processes, and packaged with recyclable or biodegradable materials (Sharma & Bhardwaj, 2021).

19

^{*} HUTECH University; Corresponding author, email: lt.thoan@hutech.edu.vn

^{**} The Business School, RMIT University

^{***} Tien Giang University

Theory of Reasoned Action (TRA)

The Theory of Reasoned Action (Ajzen & Fishbein, 1980) explains the relationship between attitudes, social norms, and behavior. In green consumption, this theory is widely applied to analyze factors influencing environmentally friendly behavior. Studies have shown that green attitudes, values, and beliefs positively affect the intention to purchase green products (Zhuang et al., 2021), suggesting that TRA is a suitable theoretical foundation for predicting consumer behavior in the context of sustainable consumption.

2.2. Hypotheses and research model

Drive for Environmental Responsibility and Green Purchase Intention

The drive for environmental responsibility reflects an individual's commitment to protecting the environment through both awareness and concrete actions (Gadenne et al., 2011). When consumers are aware of the consequences of environmental degradation, they tend to adopt more environmentally friendly behaviors, including a preference for green products. Therefore, the following hypothesis is proposed:

H1: Drive for environmental responsibility has a positive effect on green purchase intention.

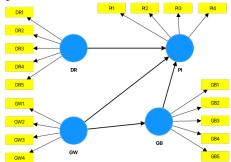
Greenwashing and Green Purchase Intention

Several studies suggest that, at the initial stage, green messages may generate a favorable impression of brands and products, especially when consumers are unable to detect greenwashing behaviors (Delmas & Burbano, 2011; Nyilasy et al., 2014). Visual and verbal elements in green advertisements can evoke positive emotions, thereby encouraging purchase intentions (Holbrook & Hirschman, 1982). Thus, the following hypothesis is proposed:

H2: Greenwashing has a positive effect on green purchase intention.

Greenwashing and Green Brand Love

When consumers fail to detect manipulative cues in green advertising, they may develop positive emotions and attachment toward the brand, regardless of the authenticity of the message (Delmas & Burbano, 2011). As such, greenwashing may contribute to the formation of brand love. The following hypothesis is proposed:


H3: Greenwashing has a positive effect on green brand love.

Green brand love and green purchase intention

According to Ajzen and Fishbein (1980), positive emotions play an important role in the formation of behavioral intentions. When consumers develop brand love, they are more likely to maintain a relationship with the brand through repeat purchasing behavior. In the context of green consumption, brand love not only reflects emotional attachment but also motivates the intention to purchase environmentally friendly products. A recent study by Zaid and Bawaqnee (2024) highlights green brand love as a key mediating factor linking advertising to green purchase behavior. Therefore, the following hypothesis is proposed:

H4: Green brand love has a positive effect on green purchase intention.

Based on this, the proposed research model is developed as follows:

Note: DR-Drive for environmental responsibility; GW-Greenwashing; GB-Green brandlove; PI-Green purchase intention.

3. Research methodology

This study employed a convenience sampling method, with the sample size determined based on the guidelines of Tabachnick & Fidell (2013). The survey was conducted with 381 individuals in Ho Chi Minh City who were interested in factors influencing green purchase intention. After data cleaning, 371 valid responses were used for analysis. The data were processed using SmartPLS software, applying analyses such as: Cronbach's Alpha reliability, convergent and discriminant validity, structural model testing, multicollinearity assessment, adjusted R², and f² effect size to determine the influence level of each variable and identify any potential omitted variables in the model.

4. Research results

4.1. Results of cronbach's alpha analysis

The reliability of the scales was assessed using Cronbach's Alpha coefficient, with results indicating that all variables met the acceptable reliability threshold (Cronbach's Alpha ≥ 0.7). Additionally, Average Variance Extracted (AVE) values were all ≥ 0.50 , indicating good convergent validity of the scales (Chin, 1998).

No. 05 (36) - 2025 STUDY EXCHANGE

Table 4.1: Summary of composite reliability and cronbach's alpha results

	Cronbach's alpha	Composite reliability (rho_a)	Composite reliability (rho_c)	Average variance extracted (AVE)
DR	0.836	0.837	0.884	0.603
GB	0.913	0.918	0.935	0.742
GW	0.862	0.867	0.906	0.707
PI	0.846	0.846	0.896	0.684

4.2. Convergent validity assessment

Table 4.2: Results of convergent validity assessment

	DR	GB	GW	PI
DR1	0.759			
DR2	0.778			
DR3	0.812			
DR4	0.757			
DR5	0.777			
GB1		0.875		
GB2		0.880		
GB3		0.850		
GB4		0.840		
GB5		0.862		
GW1			0.843	
GW2			0.836	
GW3			0.847	
GW4			0.837	
PI1				0.830
PI2				0.833
PI3				0.819
PI4				0.827

Convergent validity reflects the high correlation among observed variables that belong to the same construct (Bagozzi, Yi, & Phillips, 1991). When evaluating convergent validity, researchers often consider the outer loadings of each indicator and the Average Variance Extracted (AVE). According to established criteria, observed variables should have an outer loading ≥ 0.7 to be considered appropriate. Based on the SmartPLS analysis, all items have loadings above 0.7, indicating that all are accepted, and the measurement scales meet the requirement for convergent validity.

4.3. Discriminant validity assessment

Table 4.3: Discriminant validity test (Heterotrait-Monotrait Ratio - HTMT Matrix)

	DR	GB	GW	PI
DR				
GB	0.508			
GW	0.496	0.294		
ΡΙ	0.673	0.486	0.439	

According to Henseler et al. (2015), the Heterotrait-Monotrait ratio (HTMT) is proposed as a reliable criterion for assessing discriminant validity between constructs, with an acceptable threshold of below 0.90. The results presented in Table 4.3 indicate that all HTMT values are below 0.90, confirming that the measurement scales in the research model meet the requirement for discriminant validity.

Table 4.4: Discriminant validity assessment using Fornell-Larcker Criterion

	DR	GB	GW	PI
DR	0.777			
GB	0.444	0.861		
GW	0.426	0.267	0.841	
PI	0.567	0.430	0.377	0.827

According to the criterion proposed by Fornell and Larcker (1981), discriminant validity is confirmed when the square root of the AVE for each latent construct is greater than the correlations between that construct and any other construct in the model. The results in the table show that the diagonal values (square roots of AVE) are greater than the corresponding correlation coefficients in the same column, indicating that the measurement scales meet the discriminant validity criterion.

Table 4.5: Structural model assessment results

	Original sample (O)	Sample mean (M)	Standard deviation (STDEV)	T statistics (O/STDEV)	P values
DR -> PI	0.413	0.404	0.111	3.714	0.000
GB -> PI	0.208	0.214	0.105	1.984	0.047
GW -> GB	0.267	0.275	0.081	3.300	0.001
GW -> PI	0.145	0.149	0.065	2.237	0.025

The path coefficients range from [-1;1]. Table 4.5 shows that all coefficients fall within the standard range, are positive, and approach 1, indicating strong positive relationships between the variables in the model. To test for statistical significance, the study employed the bootstrapping technique. Coefficients are considered statistically significant when t > 1.96 (corresponding to p < 0.05). The results confirm that all relationships in the model are statistically significant.

4.5. Model reassessment using PLS-SEM

Multicollinearity assessment

The model was reassessed using the PLS-SEM method to ensure the reliability and explanatory power of the variables. The multicollinearity test results indicate that all Variance Inflation Factor (VIF) values fall within a safe range (1.000-1.426), well below the exclusion threshold of 5, confirming no multicollinearity among the independent variables.

Table 4.6: Multicollinearity Test Results (Variance Inflation Factor - VIF)

	VIF
DR -> PI	1.426
GB -> PI	1.257
GW -> GB	1.000
GW -> PI	1.233

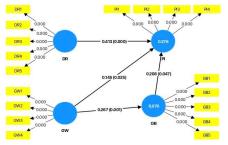
4.6. Evaluation of Adjusted R² Coefficient

The R² coefficient measures the predictive power of the model, reflecting the combined influence of exogenous variables on the endogenous variable (Hair et al., 2016). R² ranges from 0 to 1, with higher values indicating stronger predictive capability. In behavioral or exploratory studies, an R² value of 0.20 or higher is considered acceptable (Hair et al., 2017). Therefore, the findings reinforce the relationship between Green

Brand Love (GB) and Purchase Intention (PI) in the proposed theoretical model.

Table 4.7: Adjusted R² Coefficients

	-	
	R-square	R-square adjusted
GB	0.071	0.070
PI	0.378	0.376


4.7. Evaluation of f² Effect Size

The f² statistic is used to assess the effect size of an independent variable on a dependent variable, with benchmark thresholds defined as: 0.35 (large), 0.15 (medium), and 0.02 (small) (Cohen, 1988). The results indicate that Drive for Environmental Responsibility (DR) exerts a moderate influence on Green Purchase Intention (PI) with $f^2 = 0.192$, while Green Brand Love (GB) and Greenwashing (GW) have smaller effects (f² values of 0.055, 0.077, and 0.028, respectively). These findings suggest that DR is a more significant factor in explaining variations in green purchase intention.

Table 4.6: Evaluation of f² effect sizes

	f-square
DR -> PI	0.192
GB -> PI	0.055
GW -> GB	0.077
GW -> PI	0.028

Thus, the research findings indicate that factors such as Drive for Environmental Responsibility (DR), Green Brand Love (GB), and Greenwashing (GW) all have statistically significant impacts on consumers' Green Purchase Intention (PI), with all relationships reaching a significance level of p < 0.05. Among these, DR exerts the strongest influence on PI, with a standardized beta coefficient of 0.413, suggesting it is the most important determinant of changes in consumers' purchase intention. This is followed by the effects of GB ($\beta = 0.208$) and GW ($\beta = 0.145$), both of which have moderate and positive impacts on PI. The final research model is presented as follows:

Note: DR - Drive for Environmental Responsibility; GW - Greenwashing; GB -Green Brand Love; PI - Green Purchase Intention.

5. Conclusion and managerial implications

This study contributes to clarifying the factors influencing green purchase intention (GPI) among consumers in Ho Chi Minh City, in the context where

green transformation is becoming a development priority in modern economies. Based on the results of the PLS-SEM model, drive for environmental responsibility was identified as the most influential factor on green purchase intention ($\beta = 0.413$), highlighting the central role of personal awareness and ethical commitment in sustainable consumer behavior.

addition. greenwashing despite controversial still exhibited a positive effect on green purchase intention ($\beta = 0.267$), particularly in contexts where consumers are not yet able to critically assess the authenticity of environmental messages. More importantly, the study confirmed that green brand love is not only influenced by greenwashing but also significantly affects green purchase intention $(\beta = 0.208)$, playing a mediating role in translating green communication into actual consumer behavior. This indicates that brand-related emotions serve as a psychological mechanism capable of transforming communication effects into concrete economic actions.

From an economic perspective, the findings suggest that non-financial factors such as drive for environmental responsibility and green brand love can generate practical commercial value, promote green consumption, and enhance competitive advantage. Therefore, businesses must not only communicate appealing green messages but also ensure authenticity and transparency to build long-term consumer trust. Overusing greenwashing may yield short-term benefits but entails significant risks, such as decreased brand loyalty and brand equity, which can adversely affect long-term business performance.

References:

Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behavior. https://ci.nii.ac.jp/ ncid/RA21965086

Bagozzi, R. P., Yi, Y., & Phillips, L. W. (1991). Assessing construct validity in organizational research. Administrative Science Quarterly, 36(3), 421-458. https://doi.org/10.2307/2393203

Chin, W. W. (1998). The partial least squares approach to structural equation modeling. Modern methods for business research, 295(2), 295-336. Delmas, M. A., & Burbano, V. C. (2011). The Drivers of Greenwashing. California Management Review, 54(1),

Fornell, C., & Larcker, D. F. (1981). Structural Equation Models with Unobservable Variables and Measurement Error: Algebra and Statistics. Journal of Marketing Research, 18(3), 382. https://doi.org/10.2307/3150980

Gadenne, D., Sharma, B., Kerr, D., & Smith, T. (2011). The influence of consumers' environmental beliefs and attitudes on energy saving behaviours. Energy Policy, 39(12), 7684-7694. https://doi.org/10.1016/j.enpol.2011.09.002
Hair, J. F., Jr., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2016). A primer on partial least squares structural

equation modeling (PLS-SEM) (2nd ed.). Sage Publications. Hair, J. F., Jr., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2017). A primer on partial least squares structural

equation modeling (PLS-SEM) (2nd ed.). Sage Publications.

Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115-135. https:// doi.org/10.1007/s11747-014-0403-8\

Holbrook, M. B., & Hirschman, E. C. (1982). The experiential aspects of consumption: Consumer fantasies, feelings, and fun. Journal of Consumer Research. 9(2). 132-140.

Nyilasy, G., Gangadharbatla, H., & Paladino, A. (2014). Perceived greenwashing: The effects of green marketing on environmental and product perceptions. Journal of Business Ethics, 125(4), 693-707.
Robinson, D. (2025, March 28). 15 biggest environmental problems of 2025 | Earth.Org. Earth.Org. https://

earth.org/the-biggest-environmental-problems-of-our-lifetime/

Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics (6th ed.). Pearson

Zaid, A. A., Bawaqni, S., Shahwan, R., & Alnasr, F. (2024). Effects of greenwashing on green purchase intention: the mediating role of green skepticism, green brand love and green brand loyalty. Journal of Foodservice Business Research, 1-28. https://doi.org/10.1080/15378020.2024.2336184

Zhuang, W., Luo, X., & Riaz, M. U. (2021). On the Factors Influencing Green Purchase Intention: A Meta-Analysis Approach. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.644020

